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ON THE FALSE DISCOVERY RATE AND AN ASYMPTOTICALLY
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In this paper we introduce and investigate a new rejection curve for as-
ymptotic control of the false discovery rate (FDR) in multiple hypotheses
testing problems. We first give a heuristic motivation for this new curve and
propose some procedures related to it. Then we introduce a set of possi-
ble assumptions and give a unifying short proof of FDR control for proce-
dures based on Simes’ critical values, whereby certain types of dependency
are allowed. This methodology of proof is then applied to other fixed rejec-
tion curves including the proposed new curve. Among others, we investigate
the problem of finding least favorable parameter configurations such that the
FDR becomes largest. We then derive a series of results concerning asymp-
totic FDR control for procedures based on the new curve and discuss several
example procedures in more detail. A main result will be an asymptotic opti-
mality statement for various procedures based on the new curve in the class
of fixed rejection curves. Finally, we briefly discuss strict FDR control for a
finite number of hypotheses.

1. Introduction. The false discovery rate (FDR) has become one of the main
research objects in multiple decision theory during the last decade. One reason for
the increasing interest in FDR controlling procedures is the need for a suitable er-
ror rate controlling criterion if the number of hypotheses is very large. It is widely
accepted that strong control of the familywise error rate (FWER) is far too re-
strictive for large systems of hypotheses. Beginning with the pioneering paper [2]
on a linear step-up FDR controlling procedure based on Simes’ test (cf. [22]) for
independent p-values, meanwhile a series of alternative procedures not only for
independent but also for dependent test statistics have been introduced and theo-
retically investigated. For the latest developments we refer to [1, 5–8, 16, 18, 20].

In general, the original linear step-up (LSU) procedure does not exhaust the pre-
specified FDR level, which gives hope for improvement with respect to power. In
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this paper we are concerned with the problem of finding an in some sense optimal
rejection curve when the number of hypotheses tends to infinity.

The paper is organized as follows: In Section 2 we introduce some notation
around the FDR and a basic model which will be considered throughout the pa-
per. Moreover, we briefly describe the interaction of rejection curves, critical value
curves and the empirical cumulative distribution function (ecdf) of p-values. In
Section 3 we give a heuristic derivation based on asymptotics of the new rejec-
tion curve denoted by fα and introduce some possible procedures based on this
curve. Section 4 is of more general character and deals with assumptions, methods
of proof, least favorable configurations (LFCs) for FDR control and upper FDR
bounds. We first introduce a series of possible assumptions and give a unifying
short proof of FDR control for procedures based on Simes’ critical values which,
among others, summarizes the derivations in [4, 19] for dependent p-values (or test
statistics) in an elegant way. Then we investigate the problem of finding LFCs for
the FDR, that is, we look for distributional settings where the FDR becomes largest
and derive upper bounds for the FDR. Section 5 is concerned with asymptotic FDR
control for procedures based on fα under the assumption of independent and uni-
formly distributed p-values on the unit interval with respect to the set of true null
hypotheses. Moreover, we formalize the asymptotic optimality of fα . Some con-
cluding remarks, including a brief discussion on some properties of procedures
related to fα if a fixed number of hypotheses is at hand, are given in Section 6.

2. Notation and preliminaries. Throughout the paper, we use the following
notation: Let (X,A, {Pϑ :ϑ ∈ �}) denote a statistical experiment and let (Hn)n∈N

be a sequence of null hypotheses with ∅ �= Hn ⊂ �. The corresponding alter-
natives are given by Kn = � \ Hn. Let (pn)n∈N denote a sequence of p-values
with pn : (X,A) −→ ([0,1],B), where B denotes the Borel-σ -field over [0,1].
Denote the set of positive integers by N and let Nn = {1, . . . , n}, I0 = I0(ϑ) =
{i ∈ N :ϑ ∈ Hi}, I1 = I1(ϑ) = N \ I0 = {i ∈ N :ϑ /∈ Hi} and In,j = In,j (ϑ) =
Ij ∩ Nn, j = 0,1. As usual, let a p-value pi for testing Hi satisfy 0 < Pϑ(pi ≤
x) ≤ x for all ϑ ∈ Hi , i ∈ N and x ∈ (0,1]. We assume that the measurable space
(X,A) is large enough to accommodate probability measures PI0 , I0 ⊆ N, under
which all p-values pi, i ∈ I0, are i.i.d. uniformly distributed on [0,1], and all pi ,
i ∈ I1, follow a Dirac distribution with point mass 1 in 0. We refer to PI0 as a Dirac-
uniform configuration. We also assume that for every ϑ ∈ � and i ∈ I0(ϑ) there
is a probability measure Pϑi defined on (X,A) for which the sequence (pn)n∈N

has the same distribution under Pϑi as the sequence (pi
n)n∈N under Pϑ , the only

difference between these two sequences of p-values being that pi
i ≡ 0. This is a

technical assumption which will be used in Section 5 for the determination of up-
per bounds for the FDR. Notice that the PI0 ’s and Pϑi ’s need not be contained in
{Pϑ :ϑ ∈ �}. Under each PI0 , the Extended Glivenko–Cantelli theorem (cf. [21],
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page 105) applies for the ecdf F̂n (say) of the p-values, that is,

lim
n→∞ sup

t∈[0,1]

∣∣∣∣F̂n(t) −
(

n1(n)

n
+ n0(n)

n
t

)∣∣∣∣ = 0 [PI0],(2.1)

where nj = nj (n) = |In,j |, j = 0,1. For a nonempty set I0 ⊆ N we denote by I ′
0

the set I0 \ {min I0} in the sequel.
For notational convenience we introduce F̂n,j , j = 0,1, as the ecdfs of the

p-values corresponding to the true (j = 0) and the false (j = 1) hypotheses, re-
spectively. Now let Hn = {Hi : i ∈ Nn} and let ϕ(n) = (ϕi : i ∈ Nn) denote a non-
randomized multiple test procedure for Hn. For a fixed ϑ ∈ � and a given test ϕ(n)

we define the number of false rejections by Vn = |{i ∈ Nn :ϕi = 1 and ϑ ∈ Hi}|
and the number of all rejections by Rn = |{i ∈ Nn :ϕi = 1}|. Then the actual (ex-
pected) FDR of a multiple test ϕ(n) given ϑ ∈ � is defined by

FDRϑ

(
ϕ(n)

) = Eϑ

[
Vn

Rn ∨ 1

]
.

The ratio Vn/[Rn ∨ 1] is the false discovery proportion (FDP). A multiple test ϕ(n)

is said to control the FDR at level α ∈ (0,1), if

sup
ϑ∈�

FDRϑ

(
ϕ(n)

) ≤ α.

The original LSU procedure for independent p-values (ϕLSU
(n) for short) rejects

Hi iff pi ≤ mα/n, where m = max{i ∈ Nn :pi:n ≤ αLSU
i:n } with αLSU

i:n = iα/n for
i = 1, . . . , n and p1:n ≤ · · · ≤ pn:n denoting the ordered p-values. This procedure
can be rewritten in terms of the ecdf F̂n of the p-values. Let t (ϕLSU

(n) ) = sup{t ∈
[0,1] : F̂n(t) ≥ t/α}. Then ϕLSU

(n) rejects Hi iff pi ≤ t (ϕLSU
(n) ). The rejection curve

rα(t) = t/α will be called the Simes line. Notice that αLSU
i:n = r−1

α (i/n). Now
let ϑ ∈ � and suppose that the pi’s, i ∈ In,0(ϑ), are i.i.d. uniformly distributed
on [0,1]. Then one of the most interesting results for the LSU procedure is that

FDRϑ

(
ϕLSU

(n)

) = n0

n
α.(2.2)

Different proofs of this fact can be found in [4, 11, 19, 23]. In [2], it was only shown
that the FDR is always bounded by n0α/n for the LSU procedure. However, the
fact that the FDR is bounded by n0α/n raised hope that improvements of the LSU
procedure should be possible. In [13], an improvement taking a Bayes risk ap-
proach has been developed. Another idea is to estimate the number n0 of true null
hypotheses and to adjust the LSU procedure in order to exhaust the prespecified
FDR level. This approach has been worked out in [23]. Multi-stage adaptive meth-
ods were recently proposed in [3]. The introduction in [14] gives a good overview
about the development of several (adaptive) approaches aiming at improving the
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LSU procedure. In this paper we tackle the problem in a more direct way by deriv-
ing a new rejection curve which will serve as a basis for various stepwise multiple
test procedures.

Many multiple test procedures can be described in terms of the ecdf F̂n of the
p-values and a rejection curve r . Let ρ : [0,1] → [0,1] be nondecreasing and
continuous with ρ(0) = 0 and positive values on (0,1]. Define critical values
αi:n = ρ(i/n) ∈ (0,1] for i = 1, . . . , n. We call ρ a critical value function. More-
over, r defined by r(x) = inf{u ∈ [0,1] :ρ(u) = x} for x ∈ [0,1] (inf ∅ = ∞), will
be called a rejection curve. For illustrative purposes, a plot of F̂n together with the
rejection curve r is most useful in order to demonstrate the decision procedure.
Note that we have the following relationship between the ecdf F̂n of n distinct
p-values p1, . . . , pn, the ordered p-values, the critical values αi:n = ρ(i/n) and
the rejection curve r :

F̂n(pi:n) ≥ r(pi:n) if and only if pi:n ≤ αi:n.

A point t = pi:n satisfying F̂n(pi:n) ≥ r(pi:n) and F̂n(pi+1:n) < r(pi+1:n) is called
a crossing point (CP) between F̂n and r . In this paper, we consider multiple test
procedures where one of the CPs is chosen as a threshold t∗ in order to reject
all Hi with pi ≤ t∗. Other thresholding rules are extensively studied in [1]. It is
immediately clear that the proportion (Rn − Vn)/(n1 ∨ 1) of rejected false null
hypotheses with respect to all false null hypotheses is nondecreasing in the thresh-
old t∗. Therefore, we look for procedures which maximize t∗ for any given set
of p-values subject to FDR control. Often, Eϑ [(Rn − Vn)/(n1 ∨ 1)] is defined as
power. Loosely speaking, larger thresholds lead to larger power.

3. Heuristic derivation of a new rejection curve. In order to derive a new
rejection curve we consider Dirac-uniform configurations PI0 , I0 ⊆ N. This pol-
icy is motivated by the fact that Dirac-uniform configurations often provide upper
bounds for the FDR, see Section 4. Let ζn = n0(n)/n denote the proportion of true
hypotheses among the first n hypotheses. We refer to this situation as the Dirac-
uniform finite model, DUn(ζn). Now suppose that

lim
n→∞ ζn = ζ ∈ [0,1].

Then (2.1) implies that, for n tending to infinity, the ecdf F̂n of the observed
p-values converges to

F∞(t |ζ ) = (1 − ζ ) + ζ t for all t ∈ [0,1] [PI0].
This situation will be called the Dirac-uniform asymptotic model, DU∞(ζ ) for
short. Now suppose we choose some t ∈ (0,1] and reject all hypotheses Hi with
pi ≤ t . Then, in the DU∞(ζ ) model, an expected proportion of tζ of the true
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hypotheses will be rejected, that is, the false discovery rate FDRζ (t) (say) is given
by

FDRζ (t) = tζ

(1 − ζ ) + tζ
.

Now we determine a tζ ∈ [0,1] such that FDRζ (tζ ) is exactly α for some pre-
specified α ∈ (0,1). Obviously, this can only work for ζ ∈ [α,1). In this case we
obtain

tζ = α(1 − ζ )

ζ(1 − α)
.

For ζ ∈ [0, α) one may set tζ = 1, which implies that all hypotheses are rejected
and FDRζ (1) = ζ < α.

We now look for a strictly increasing rejection curve fα : [0,1] → [0,1] which
does not depend on ζ but tells us which of the hypotheses can be rejected such
that the limiting FDR is exactly α for ζ ∈ [α,1). The function fα can be found by
requiring fα(tζ ) = F∞(tζ ) for all ζ ∈ [α,1), which is equivalent to

fα

(
α(1 − ζ )

ζ(1 − α)

)
= 1 − ζ

1 − α
.

Obviously,

fα(t) = t

t (1 − α) + α
, t ∈ [0,1],

fulfills this requirement. In the DU∞(ζ ) model, the limiting ecdf F∞(·|ζ )

crosses fα in the point (tζ , yζ ) with tζ = min{α(1 − ζ )/[ζ(1 − α)],1} and yζ =
min{(1 − ζ )/(1 − α),1} for the first time, and it should be noted that this is also
true for ζ = 1 if we define (t1, y1) = (0,0).

REMARK 3.1. Comparing the Simes line rα(t) = t/α and the new rejection
curve fα(t), we obviously have rα(t) > fα(t) for t > 0 and the derivative in t = 0
is 1/α for both curves. Moreover, notice that fα obeys the symmetry property

f −1
α (t) = αt

1 − (1 − α)t
= 1 − fα(1 − t) for all t ∈ [0,1],

where f −1
α denotes the inverse of fα . Clearly, f −1

α is a critical value function.

The new rejection curve fα will be called the asymptotically optimal rejection
curve (AORC). The question is how to implement fα not only in the Dirac-uniform
models but also in more general models into a multiple test procedure which con-
trols the FDR level α strictly or at least asymptotically. The critical values induced
by fα are given by

αi:n = f −1
α

(
i

n

)
= (i/n)α

1 − (i/n)(1 − α)
= iα

n − i(1 − α)
, i = 1, . . . , n.(3.1)
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Remember that distinct p-values satisfy

F̂n(pi:n) ≥ fα(pi:n) if and only if pi:n ≤ αi:n.

It is tempting to use α1:n ≤ · · · ≤ αn:n in a step-up (SU) procedure for testing n

hypotheses. Unfortunately, αn:n = 1, so that this procedure always rejects all hy-
potheses. This pitfall is due to the fact that fα(1) = F̂n(1) = 1. Therefore, we need
some adjustment with respect to fα or the SU procedure. In the remainder of this
section, we consider some candidates for asymptotic FDR control avoiding the
aforementioned pitfall.

EXAMPLE 3.1 (Step-up-down procedures). An interesting class of procedures
based on critical values 0 < α1:n ≤ · · · ≤ αn:n ≤ 1 are step-up-down (SUD) proce-
dures introduced in [24] and studied in [19] in terms of FDR control. For λn ∈ Nn

an SUD procedure ϕSUD
n,λn

= (ϕ1, . . . , ϕn) of order λn is defined as follows: If
pλn:n ≤ αλn:n, set mn = max{j ∈ {λn, . . . , n} :pi:n ≤ αi:n for all i ∈ {λn, . . . , j}},
whereas for pλn:n > αλn:n, put mn = sup{j ∈ {1, . . . , λn} :pj :n ≤ αj :n} (sup∅ =
−∞). Define ϕi = 1 if pi ≤ αmn:n and ϕi = 0 otherwise (α−∞:n = −∞). Note that
λn = 1 yields a step-down (SD) procedure and λn = n yields an SU procedure. The
order of an SUD procedure can be defined in terms of a fixed parameter λ ∈ [0,1]
by setting λn = inf{j ∈ Nn :αj :n ≥ λ} (inf ∅ = n). Then λ = 0 (λ = 1) corresponds
to an SD (SU) procedure. An SUD procedure of order λn = λn(λ), λ ∈ [0,1),
based on fα resolves the problems around the point t = 1 in an elegant way. It
is obvious in view of Remark 3.1 that in the case of λ ≥ α the new SUD procedure
based on fα rejects at least all hypotheses rejected by the LSU procedure, possibly
more. Therefore, one cannot expect that the FDR level is controlled in the finite
case. However, it will be shown that the FDR is controlled asymptotically. Note
that ϕSUD

n,λn
is component-wise nondecreasing in λ.

EXAMPLE 3.2 (Adjusted SU procedures based on fα). As noted before, an SU
procedure based on αi:n = f −1

α (i/n) cannot work. Therefore, some adjustment of
fα in an SU procedure is necessary. We first consider the case where the adjusted
rejection curve f

adj
α satisfies that f

adj
α (x)/x is non-increasing in x, an important

property for the calculation of the FDR. One may specify some κ ∈ (0,1) and
define a new rejection curve

f adj
α,κ(x) =

{
fα(x), 0 ≤ x < κ ,
h(x), κ ≤ x ≤ 1,

such that f
adj
α (x)/x is nonincreasing in x, f

adj
α (x∗) = 1 for some x∗ < 1, and,

fα(κ) = h(κ). For example, one may choose h(x) = ax + b for suitable values
a, b ≥ 0. We consider two possible choices of h (h1 and h2 say) and refer to the
resulting rejection curves as f

(i)
α,κ , i = 1,2. Let

h1(x) = f ′
α(κ)(x − κ) + fα(κ), x ∈ [κ,1].
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Then h′
1(κ) = f ′

α(κ), h1(κ) = fα(κ) and h1(x
∗) = 1 for x∗ = κ(1 − α)(2 − κ) +

α < 1. The largest possible slope of h is a = fα(κ)/κ . This leads to the second
choice, that is, h2(x) = xfα(κ)/κ . This is close to the truncated SU procedure in
Example 3.3 below. Note that h2(x

∗) = 1 for x∗ = κ(1 − α) + α. For example,
suppose that κ = f −1

α (i/n) for some fixed i ∈ Nn. Then the step-up critical values
are given by

γj :n =
⎧⎨
⎩

f −1
α (j/n), 1 ≤ j ≤ i,

j

n

κ

fα(κ)
, i + 1 ≤ j ≤ n.

EXAMPLE 3.3 (Truncated SU procedures based on fα). Let κ ∈ (0,1) be fixed
and define

ρα(x) =
{

f −1
α (x), 0 ≤ x ≤ fα(κ),

κ, fα(κ) < x ≤ 1.

With γi:n = min{f −1
α (i/n), κ} we have γj :n = ρα(i/n) for j = i, . . . , n. Hence, the

truncated SU procedure is well defined in terms of ρα . It is worth mentioning that
this type of procedure differs substantially from the adjusted procedures discussed
in Examples 3.1 and 3.2, because the monotonicity behavior of the ratio ρα(x)/x

changes at x = fα(κ), which makes FDR calculation much subtler.

The next section deals with methodologies for proving FDR control and deriv-
ing upper FDR bounds. The results will be applied in Section 5 in order to derive
conditions for asymptotic FDR control for procedures based on the AORC. The
aforementioned example procedures are then investigated at the end of Section 5
with respect to asymptotic FDR control and asymptotic optimality.

4. A unifying proof of FDR control and upper FDR bounds. Suppose that
Rn and ϕ(n), respectively, are defined in terms of p-values p1, . . . , pn and critical
values αi:n = ρ(i/n) for some critical value function ρ. Consider the following
three sets of possible assumptions. The first two assumptions concern the structure
of the test procedure (test assumptions):

(T1) ∀i ∈ Nn :pi ≤ α1:n implies ϕi = 1.
(T2) ∀j ∈ Nn :Rn = j implies ∀i ∈ Nn : [ϕi = 1 ⇔ pi ≤ αj :n].

The second set of assumptions concerns properties of distributions of p-values
and Rn (distributional assumptions):

(D1) ∀ϑ ∈ � :∀j ∈ Nn :∀i ∈ In,0(ϑ) :Pϑ(Rn ≥ j |pi ≤ t) is nonincreasing in t ∈
(0, αj :n].

(D2) ∀ϑ ∈ � :∀j ∈ Nn :∀i ∈ In,0(ϑ) :∀t ∈ (0, αj :n] :Pϑ(Rn ≥ j |pi ≤ t) ≤
Pϑi (Rn ≥ j).

(D3) ∀ϑ ∈ � :∀i ∈ In,0(ϑ) :pi ∼ U([0,1]).
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Finally we have two possible independence assumptions:

(I1) ∀ϑ ∈ � : The pi’s, i ∈ In,0(ϑ), are i.i.d.
(I2) ∀ϑ ∈ � : (pi : i ∈ In,0) and (pi : i ∈ In,1) are stochastically independent ran-

dom vectors.

Furthermore, we often refer to step-up tests or step-up-down tests of order λn.
The simple structure of SU tests often simplifies derivations concerning properties
of these tests. If ϕ(n) is a step-up-down test, the properties of a step-up test remain
valid in the step-up branch of such a procedure. For example, it is important to
note (see [19], page 248) that given a step-up-down test of order λn, under (D3),
(I1) and (I2), we get for all ϑ ∈ � and all i ∈ In,0(ϑ)

∀j = 1, . . . , λn :∀t ∈ (0, αj :n] :Pϑ(Rn ≥ j |pi ≤ t) = Pϑi (Rn ≥ j),(4.1)

∀j = 1, . . . , λn :∀t ∈ (0, αj :n] :Pϑ(Rn = j |pi ≤ t) = Pϑi (Rn = j).(4.2)

For λn = n, that is, for a step-up test, we even get

∀j = 1, . . . , n :∀t ∈ (0, αj :n] :Pϑ(Rn ≥ j |pi ≤ t) = Pϑi (Rn ≥ j).

Assumptions (T1) and (T2) concern more general structures of test procedures.
Step-up-down tests satisfy both (T1) and (T2). The monotonicity assumption
in (D1) is somewhat weaker than the PRDS assumption (PRDS: positive regression
dependency on subsets). More precisely, from the P

pi

ϑ -almost sure antitonicity of
the factorized conditional probability Pϑ(Rn ≥ j |pi = t) in t ∈ [0, αj :n] we obtain
the property formulated in (D1), where the equality in the condition is replaced
by an inequality. This type of conclusion is indicated in [17] and can be proved in
an easy way by using Wijsman’s inequality, see [25]. Anyhow, (D1) is the deci-
sive condition for dependent p-values in order to prove FDR control or to derive
upper bounds for the FDR. Examples of distributions being PRDS are extensively
studied in [4] and [19]. Anyhow, we have no example with dependent p-values
yet where (D1) is easier to show than PRDS. However, under the independence
assumptions (I1) and (I2), the important class of SUD tests satisfy (D1). Prop-
erty (D2) will only be used under the independence assumptions (I1) and (I2) and
is an important tool for deriving LFC results. In case of dependency, (D2) is often
violated. Assumptions (D3) and (I1) concern the distribution of p-values under the
corresponding null hypotheses.

The following theorem and its proof unify, simplify and slightly extend the re-
sults and the proofs given in [4] and [19], respectively.

THEOREM 4.1. Let α ∈ (0,1) and let ϕ(n) be a multiple test procedure for
Hn defined in terms of Simes’ critical values αi:n = iα/n, i = 1, . . . , n. Let ϑ ∈ �

such that n0 hypotheses are true and the remaining ones are false. If (T1), (T2)
and (D1) are satisfied, then

FDRϑ

(
ϕ(n)

) ≤ n0

n
α,
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with “=” if ϕ(n) is a step-up test and (D3), (I1) and (I2) are satisfied in addi-
tion.

PROOF. Consider the following chain of (in)equalities:

FDRϑ(ϕ(n)) = ∑
i∈In,0(ϑ)

n∑
j=1

1

j
Pϑ(Rn = j,ϕi = 1)

= ∑
i∈In,0(ϑ)

n∑
j=1

1

j
Pϑ(pi ≤ αj :n)Pϑ(Rn = j |pi ≤ αj :n)(4.3)

≤ ∑
i∈In,0(ϑ)

n∑
j=1

αj :n
j

Pϑ(Rn = j |pi ≤ αj :n)(4.4)

≤ ∑
i∈In,0(ϑ)

[
α1:nPϑ(Rn ≥ 1|pi ≤ α1:n)

(4.5)

+
n∑

j=2

[
αj :n
j

− αj−1:n
j − 1

]
Pϑ(Rn ≥ j |pi ≤ αj :n)

]

= n0

n
α.(4.6)

Equation (4.3) holds under (T2), and “=” holds in (4.4) if (D3) holds. Inequal-
ity (4.5) holds under the assumption (D1) with “=” if ϕ(n) is a step-up test and
(D3), (I1) and (I2) hold. Finally, (4.6) is a consequence of (T1). �

REMARK 4.1. The key step in the proof is (4.5), where Pϑ(Rn ≥ j |pi ≤
αj−1:n) is replaced by Pϑ(Rn ≥ j |pi ≤ αj :n) for j = 2, . . . , n according to as-
sumption (D1). In case of dependency or in case of a non-step-up test, the dif-
ference between these quantities may sum up to a considerable amount, that is,
the FDR may be much smaller than the upper bound n0α/n in such cases. For a
detailed investigation of the latter phenomenon, see [9].

One of the main problems in order to ensure FDR control of a multiple test
procedure is to find least favorable parameter configurations (LFCs), that is, pa-
rameter configurations under which the FDR for a given test procedure becomes
largest. Obviously, LFCs are no issue for the LSU procedure if (D3), (I1) and (I2)
hold true. To date it looks like SU procedures are easier to cope with than SD or
SUD procedures. One reason for this is that Dirac-uniform configurations can of-
ten be viewed as least favorable for certain SU procedures. This fact is based on
the following important result:
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THEOREM 4.2 (Benjamini and Yekutieli (2001); cf. [4]). An SU procedure
with critical values α1:n ≤ · · · ≤ αn:n fulfilling (D3), (I1) and (I2) has the following
properties:

(1) If the ratio αi:n/i is increasing in i, as (pi : i ∈ In,1) increases stochasti-
cally, the FDR decreases.

(2) If the ratio αi:n/i is decreasing in i, as (pi : i ∈ In,1) increases stochasti-
cally, the FDR increases.

Hence, under the assumptions of Theorem 4.2, the Dirac-uniform configura-
tions, where all p-values under alternatives are almost surely 0, can be viewed
as LFCs if the ratio αi:n/i is increasing in i. More precisely, on the parameter
subspace, where exactly n0 (n1) hypotheses are true (false), the FDR becomes
largest if the p-values under alternatives are almost surely 0. Therefore, it suffices
to consider all Dirac-uniform configurations in order to check whether the FDR is
controlled at level α.

Unfortunately, the method of proof given in [4] does not seem to work for SD
and SUD procedures. However, we show below that Dirac-uniform configurations
often provide upper bounds. To this end, we define q(x) = ρ(x)/x for all x ∈ (0,1]
and assume that q(0) = lim supx↓0 q(x) < ∞. Moreover, we define the (continu-
ous) function q by q(x) = max0≤t≤x q(t), x ∈ [0,1]. Hence, q is the upper isotonic
envelope or, in other words, the least isotonic majorant of q . For the derivation of
upper FDR bounds, we now introduce the following additional conditions:

(A1) If (p1, . . . , pn) is stochastically not greater under ϑ1 ∈ � than under ϑ2 ∈ �,
then ϕ(n) is stochastically not greater under ϑ2 ∈ � than under ϑ1 ∈ �.

(A2) ρ(x)/x is nondecreasing for x ∈ (0,1].
Note that αi:n/i is nondecreasing in i if (A2) holds. If ρ is differentiable on

(0,1), (A2) is equivalent to ρ ′(x) ≥ q(x) for x ∈ (0,1). In what follows, q is
essential in deriving upper bounds for the FDR. Note that q �= q for the truncated
step-up procedure introduced in Example 3.3. If q �= q , the bounds for the FDR
based on q may not be that sharp.

THEOREM 4.3. Let ϑ ∈ � such that n0 ∈ Nn, hypotheses are true and the
remaining ones are false. Let i0 = min I0 [and I ′

0 = I0 \ {i0} as defined below
equation (2.1)]. If (T1)–(I2) are satisfied, then

FDRϑ

(
ϕ(n)

) ≤ n0

n

n∑
j=1

q(j/n)Pϑi0 (Rn/n = j/n)(4.7)

= n0

n
Eϑi0 q(Rn/n),(4.8)
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with equality in (4.7) if ϕ(n) is a step-up test and (A2) holds in addition. If (T1)–(I2)
and (A1) are fulfilled, then

FDRϑ

(
ϕ(n)

) ≤ n0

n
EI ′

0
q(Rn/n).(4.9)

PROOF. Let bj = Pϑ(Rn ≥ j |pi0 ≤ αj :n) and �q(j/n) = q(j/n) −
q((j − 1)/n) for j = 1, . . . , n. Then, proceeding as in the proof of Theorem 4.1
we get for fixed ϑ ∈ � under (D1)–(D3), (I1) and (I2)

FDRϑ

(
ϕ(n)

) = n0

n

n∑
j=1

q(j/n)Pϑ(Rn = j |pi0 ≤ αj :n)

≤ n0

n

n∑
j=1

q(j/n)Pϑ(Rn = j |pi0 ≤ αj :n)(4.10)

≤ n0

n

[
q(1/n)b1 +

n∑
j=2

�q(j/n)bj

]
(4.11)

≤ n0

n

[
q(1/n)Pϑi0 (Rn ≥ 1) +

n∑
j=2

�q(j/n)Pϑi0 (Rn ≥ j)

]
(4.12)

= n0

n

n∑
j=1

q(j/n)Pϑi0 (Rn/n = j/n),

which proves (4.7). In view of Pϑi0 (Rn > 0) = 1 according to (T1), (4.8) follows
immediately. If ϕ(n) is a step-up test, which implies (4.1) for λn = n, we have
equality in (4.11) and (4.12), hence q = q yields equality in (4.10). Finally, in or-
der to prove (4.9), we use the same argumentation as in the proof of Theorem 4.2
given in [4], that is, that stochastic increase in the distribution of the random vector
(p1, . . . , pn) can be characterized by the increase of the expectation of all nonde-
creasing functions (in case the expectation exists). To this end, we note that ob-
viously Rn = |{i ∈ Nn :ϕi = 1}| is a nondecreasing function of ϕ(n) and hence,
due to (A1), is stochastically nonincreasing in (p1, . . . , pn). The isotonicity of q

completes the proof. �

Inequality (4.9) will be a helpful tool in order to calculate upper FDR bounds
and to prove FDR control, because it only makes use of the distribution of Rn

under Dirac-uniform configurations. Especially for SUD tests, this distribution can
be handled analytically.

5. Asymptotic FDR control for procedures based on the AORC. This sec-
tion deals with conditions for asymptotic FDR control for procedures based on the
new rejection curve. A major result will be that the example procedures presented
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in Section 3 control the FDR asymptotically. Theorems 5.1 and 5.3 provide suffi-
cient conditions for asymptotic FDR control. If the underlying procedure leads to
a determinable proportion of rejected hypotheses, Theorems 5.2 and 5.4 even give
explicit values for the resulting FDR. Moreover, the asymptotic optimality of fα is
formalized in Theorem 5.5.

THEOREM 5.1. Suppose ϕ(n) is based on ρ ≤ f −1
α and that (T1)–(I2)

and (A1) are fulfilled. If for all nonempty sets I0 ⊆ N and all subsequences
(nk)k∈N ⊆ N with limk→∞ ζnk

= ζ for some ζ ∈ [0,1], it holds that

lim sup
k→∞

Rnk

nk

≤ fα(tζ ) [PI ′
0
],(5.1)

then

lim sup
n→∞

sup
ϑ∈�

FDRϑ

(
ϕ(n)

) ≤ α.(5.2)

PROOF. Let, for notational convenience, Pm,n refer to a Dirac-uniform con-
figuration such that the first m p-values are i.i.d. uniformly distributed and the re-
maining ones follow a Dirac distribution with point mass in 0, 0 ≤ m ≤ n, n ∈ N.
Then we have from inequality (4.9)

∀n ∈ N : sup
ϑ∈�

FDRϑ

(
ϕ(n)

) ≤ max
1≤n0≤n

n0

n
En0−1,nq(Rn/n).

Since for each n ∈ N the maximum in this inequality is attained at some value
n0(n) (say), we get

lim sup
n→∞

sup
ϑ∈�

FDRϑ

(
ϕ(n)

) ≤ lim sup
n→∞

ζnEn0(n)−1,nq(Rn/n),

where ζn = n0(n)/n, n ∈ N. We now may extract a subsequence (nk)k∈N of N with
limk→∞ ζnk

= ζ for some ζ ∈ [0,1] such that

lim sup
n→∞

ζnEn0(n)−1,nq(Rn/n) = lim
k→∞ ζnk

En0(nk)−1,nk
q(Rnk

/nk)

≤ ζ lim sup
k→∞

En0(nk)−1,nk
q∗(Rnk

/nk),

where q∗ denotes the q-function corresponding to the critical value function f −1
α .

Similarly as in [11], pages 1003–1004, we are able to select from (nk)k∈N a further
subsequence (without loss of generality with the same name) and construct a global
set I ⊆ N with the property |I ∩ Ink

| = n0(nk) for all k ∈ N. (At this point it should
be noted that the definition of the sets Mk at the bottom of page 1003 in [11] has
a typo at its right end in that the term k(nk) has to be replaced by nk .) Now we
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obtain from (5.1)

ζ lim sup
k→∞

En0(nk)−1,nk
q∗(Rnk

/nk) = ζ lim sup
k→∞

EI ′q∗(Rnk
/nk)

≤ ζEI ′q∗
(

lim sup
k→∞

Rnk
/nk

)

= ζq∗(fα(tζ ))

= min{α, ζ } ≤ α,

hence the assertion of the theorem, that is, (5.2) follows. �

If we sharpen assumption (5.1), we can even give explicit values for the FDR.

THEOREM 5.2. Let ϑ ∈ �, ϕ(n) be based on ρ ≤ f −1
α and assume (T2), (D3),

(I1) and

lim
n→∞ ζn = ζ ∈ [0,1].(5.3)

If limn→∞ Rn/n = r∗[Pϑ ] for some r∗ ∈ (0, fα(tζ )], then it holds

lim
n→∞ FDRϑ

(
ϕ(n)

) = ζρ(r∗)/r∗ = ζq(r∗) ≤ min{α, ζ }.(5.4)

PROOF. From (T2) and for n0, n ∈ N we get the representation

Vn = n0F̂n,0(ρ(Rn/n))1{Rn>0}.
From this we obtain the inequality chain

|Vn/n − ζnρ(Rn/n)| ≤ ζn|F̂n,0(ρ(Rn/n)) − ρ(Rn/n)| ≤ sup
t∈[0,1]

|F̂n,0(t) − t |.

Hence, using the Glivenko–Cantelli property (2.1) together with the remain-
ing assumptions of the theorem and the continuity of ρ, we finally see that
Vn/n converges Pϑ -almost surely to ζρ(r∗). Thus, due to r∗ > 0, we have
limn→∞ Eϑ [Vn/(Rn ∨ 1)] = ζρ(r∗)/r∗. The right-hand side inequality in (5.4) is
obtained by noting that ζf −1

α (t)/t is increasing in t ∈ (0, fα(tζ )] to ζ tζ /fα(tζ ) =
min{α, ζ } at t = fα(tζ ). �

The remaining case r∗ = 0 is treated in the following two theorems.

THEOREM 5.3. Let ϑ ∈ �, ϕ(n) be based on ρ ≤ f −1
α and assume (T1)–(I2),

(A1), (5.3) and

∀ε > 0 : lim inf
n→∞ inf

ε≤t≤1

(
t − F̂n(ρ(t))

)
> 0 [Pϑ ].(5.5)

Then it holds that

lim sup
n→∞

FDRϑ

(
ϕ(n)

) ≤ ζ lim sup
x↓0

q(x) = ζq(0) = ζq(0) ≤ ζα.(5.6)
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PROOF. To avoid triviality, we assume I0(ϑ) �= ∅. Then, from (4.7) and (4.8)
we have that

lim sup
n→∞

FDRϑ

(
ϕ(n)

) ≤ ζ lim sup
n→∞

Eϑi0 q(Rn/n).(5.7)

Since due to (T1) and (T2) we have for all n ∈ N

F̂n(ρ(Rn/n)) = Rn/n,

(5.5) implies that for every fixed ε > 0 we obtain lim supn→∞ Rn/n ≤ ε Pϑ -almost
surely, that is, limn→∞ Rn/n = 0 Pϑ -almost surely. Now, since for all n ∈ N the
maximum absolute difference on the unit interval of the ecdf F̂n [corresponding
to the sequence of p-values (pn)n∈N] and the ecdf F̂

i0
n [corresponding to the se-

quence of p-values (p
i0
n )n∈N defined in Section 2] is at most 1/n, condition (5.5)

also holds Pϑi0 -almost surely, which entails that limn→∞ Rn/n = 0 Pϑi0 -almost
surely. Hence, due to the continuity of q we have limn→∞ Eϑi0 q(Rn/n) = q(0) =
q(0) ≤ limt↓0 f −1

α (t)/t = α. In view of inequality (5.7), this completes the proof.
�

THEOREM 5.4. Under the assumptions of Theorem 5.3 let ϕ(n) be an SUD
test of order λn with lim infn→∞ λn/n > 0 and the condition (5.5) be replaced by

∀ε > 0 : lim inf
n→∞ inf

ε≤t≤K

(
t − F̂n(ρ(t))

)
> 0 [Pϑ ](5.8)

for some K ∈ [0,1] fulfilling K > L = lim supn→∞ λn/n in the case of L < 1 and
K = 1 otherwise. Supposing that limx↓0 q(x) exists, we have

lim
n→∞ FDRϑ

(
ϕ(n)

) = ζ lim
x↓0

q(x) = ζq(0) = ζq(0) ≤ ζα.(5.9)

PROOF. Again, to avoid triviality, we assume I0(ϑ) �= ∅. Equation (5.9) can
be shown by utilizing the notation introduced in the proof of Theorem 4.3 and the
decomposition

FDRϑ

(
ϕ(n)

) = ζn

λn∑
j=1

q(j/n)Pϑ(Rn = j |pi0 ≤ αj :n)

+ ζn

n∑
j=λn+1

q(j/n)Pϑ(Rn = j |pi0 ≤ αj :n)

= Mn + mn (say).

In view of Theorem 4.3 and the structure of an SUD test, we obtain by apply-
ing (4.2) that

Mn = ζnEϑi0

[
q(Rn/n)1{Rn/n≤λn/n}

]
,

mn ≤ ζnEϑi0

[
q(Rn/n)1{Rn/n>λn/n}

]
.
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From (5.8) it follows that Pϑ -almost surely F̂n(ρ(λn/n)) < λn/n ≤ K and
consequently Rn/n < λn/n ≤ K holds true for eventually all n ∈ N. There-
fore, again due to (5.8), in analogy to the proof of Theorem 5.3 we con-
clude that limn→∞ Rn/n = 0 Pϑi0 -almost surely, which finally entails
limn→∞ 1{Rn/n>λn/n} = 0 Pϑi0 -almost surely. Together with the boundedness of q

this entails that limn→∞ mn = 0. Moreover, exploiting the continuity of q at x = 0
we see that limn→∞ Mn = ζq(0) = ζq(0), which altogether yields the desired
result. �

REMARK 5.1. One cannot expect to obtain exact values for the limiting FDR
under the quite general assumptions of Theorem 5.2 if r∗ = 0. To see this, consider
the case ζn ≡ 1 in which the FDR is equal to the familywise error rate (FWER). For
ζn ≡ 1 it was shown in [12] that the FWER is equal to α for any n ∈ N in the case of
a linear SU procedure, while it tends to 1−exp(−α) < α for a linear SD procedure.
We therefore have to know more about the structure of the underlying procedure
in order to compute the limiting FDR in case of r∗ = 0. The limiting behavior
for procedures based on fα (or its modifications) satisfying the assumptions of
Theorem 5.4 is in accordance with the linear SU procedure and should be expected,
since the difference of the critical values αi:n − iα/n tends to zero for i ∈ o(n).
Therefore, the local behavior around zero should not differ much for large n.

COROLLARY 5.1 (Examples 3.1–3.3 continued). Assume the distributional
assumptions (D3), (I1) and (I2) hold. Then the SUD procedure based on fα with
parameter λ ∈ [0,1) and the SU procedures based on f

(i)
α,κ , i = 1,2, as well as the

truncated SU procedure asymptotically control the FDR at level α. More precisely,
if condition (5.3) is fulfilled, that is, limn→∞ ζn = ζ ∈ [0,1], then:

(i) For the SUD procedure the upper bound α for the limiting FDR is sharp
for ζ ∈ [α,1].

(ii) For the SU procedures based on f
(i)
α,κ , i = 1,2, the upper bound α for the

limiting FDR is sharp for ζ ≥ ζ ∗(κ) = α/(κ(1−α)+α). In the case of ζ < ζ ∗(κ),
an upper bound for the asymptotic FDR is given by ζ t̃ζ /(1 − ζ + ζ t̃ζ ), where t̃ζ
denotes the unique solution of the equation F∞(t |ζ ) = hi(t), i = 1,2, on (0, tζ ).
For finite n, the upper bound given in (4.9) is sharp.

(iii) For the truncated SU procedure the upper bound α for the limiting FDR is
sharp for ζ ≥ ζ ∗(κ). In the case of ζ < ζ ∗(κ), an upper bound for the asymptotic
FDR is given by ζκ/(1 − ζ + ζκ).

PROOF. First of all, as mentioned before, a step-up-down test has the struc-
tural properties (T1), (T2) and (A1). Moreover, assumptions (D3), (I1) and (I2)
imply the crucial monotonicity properties (D1) and (D2) for a step-up-down test.
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Hence, in order to apply Theorem 5.1, it remains to check the validity of condi-
tion (5.1). To this end, for notational convenience and without loss of generality,
we work under condition (5.3). We make use of (2.1), that is, that the ecdf F̂n con-
verges PI ′

0
-almost surely to its limit F∞(·|ζ ) uniformly in t ∈ [0,1]. Since under

(T1) and (T2) we have the identity F̂n(ρ(Rn/n)) = Rn/n for all n ∈ N, (2.1) leads
to limn→∞(F∞(ρ(Rn/n)|ζ ) − Rn/n) = 0 PI ′

0
-almost surely. From this we con-

clude that (PI ′
0
-almost surely) the only possible accumulation points of the se-

quence (Rn/n)n∈N consist of the solutions of the equation F∞(ρ(t)|ζ ) = t in
t ∈ [0,1]. If, as in Examples 3.2 and 3.3, this solution is unique, then the sequence
(Rn/n)n∈N necessarily converges to this solution r∗ = r∗(ζ ) ∈ [0,1] (say) PI ′

0
- al-

most surely.
If, however, as in Example 3.1, the equation F∞(ρ(t)|ζ ) = t has the solu-

tion t = 1 and exactly one further (smaller) solution in [0,1), we have to ex-
clude t = 1 as a possible accumulation point of (Rn/n)n∈N in the latter case
in order to prove the PI ′

0
-almost sure convergence of (Rn/n)n∈N to the small-

est solution r∗ = r∗(ζ ) (say) of the aforementioned equation. To this end, we
only consider values of ζ leading to the two distinct solutions r∗(ζ ) and 1. For
critical value functions ρ with ρ(t) ≤ f −1

α (t) for all t ∈ [0,1] it is then evident
that F∞(ρ(t)|ζ ) < t for all t ∈ (r∗,1). Moreover, notice that, by definition of
λn(λ), we have the inequalities λn(λ) − 1 ≤ nr(λ) ≤ λn(λ) for all n ∈ N. Now,
if λ > ρ(r∗), this, together with condition (2.1), yields that PI ′

0
-almost surely

F̂n(ρ(λn(λ)/n)) < λn(λ)/n and consequently Rn < λn(λ) holds true for eventu-
ally all n ∈ N. This entails lim supn→∞ Rn/n ≤ lim supn→∞ λn(λ)/n = r(λ) < 1
PI ′

0
-almost surely, which is just what we wanted to show.

Finally, if λ ≤ ρ(r∗), we may choose a λ′ > ρ(r∗) and compare the number of
rejections of the corresponding SUD procedures. Since this number is nondecreas-
ing in λ ∈ [0,1], we eventually arrive at lim supn→∞ Rn/n ≤ r(λ′) < 1 PI ′

0
-almost

surely.
Since for all procedures under investigation it holds ρ(t) ≤ f −1

α (t) for all t ∈
[0,1], we conclude that r∗ = r∗(ζ ) ≤ fα(tζ ). Hence, Theorem 5.1 applies. As a
consequence, the example procedures asymptotically control the FDR.

In the case of the SUD procedure in (i), we use ρ = f −1
α and obtain r∗ = fα(tζ ).

Hence, the upper bound α for the asymptotic FDR is sharp in (i) under Dirac-
uniform configurations. The sharpness of the upper bound α for the asymptotic
FDR in (ii) and (iii) is due to the fact that under Dirac-uniform configurations with
ζ ≥ ζ ∗(κ) we obtain r∗ = fα(tζ ).

Finally, the sharpness of the upper bounds for the finite n FDR in (ii) is a con-
sequence of (A2), which is fulfilled for f

(i)
α,κ , i = 1,2. Sharpness here means that

the upper bound given in (4.9) is exactly attained for finite n under Dirac-uniform
configurations. �

The latter corollary means, in other words, that procedures based on fα fulfilling
the assumptions of Theorem 5.2 asymptotically exhaust the whole FDR level α
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under Dirac-uniform configurations. Moreover, the rejection curve fα cannot be
improved in the sense of the following theorem, which is another consequence of
Theorem 5.1. In order to formalize this, let α ∈ (0,1), λ ∈ [0,1] and Mλ denote the
set of rejection curves r with the property that for all I0 ⊆ N with limn→∞ ζn = ζ

for some ζ ∈ [0,1] it holds

lim sup
n→∞

FDRI0

(
ϕ

SUD(r)
n,λn

) ≤ lim sup
n→∞

sup
ϑ∈�

FDRϑ

(
ϕ

SUD(r)
n,λn

) ≤ α,(5.10)

where ϕ
SUD(r)
n,λn

is the step-up-down procedure of order λn = λn(λ) based on r .
It should be noted that the first inequality in (5.10) is not very restrictive since
many statistical models satisfy the “model continuity assumptions” (SA) formu-
lated in [11], due to which, at least for SUD procedures such as ϕ

SUD(r)
n,λn

, the corre-

sponding FDR values FDRI0(ϕ
SUD(r)
n,λn

) can be approximated arbitrarily closely by

the values FDRϑ(ϕ
SUD(r)
n,λn

) for some suitably chosen ϑ ∈ �, n ∈ N.
In terms of power it is immediately clear that, whenever r1, r2 ∈ Mλ with

r1 ≤ r2, then ϕ
SUD(r1)
n,λn

≥ ϕ
SUD(r2)
n,λn

. Therefore, a smaller rejection curve typically
leads to a more powerful test procedure in the sense that more (never less) false
hypotheses can be rejected. Here we define the power of a test ϕ(n) by β̄ϑ (ϕ(n)) =
Eϑ [(Rn − Vn)/(n1 ∨ 1)].

THEOREM 5.5 (Asymptotic optimality of fα).

(i) Let λ ∈ [0,1] and r ∈ Mλ. Then

∀t ∈ [0, λ] : r(t) ≥ fα(t).(5.11)

If λ < 1, then it holds for any τ ∈ (λ,1] that

∀t ∈ (λ, τ ] : r(t) ≤ fα(t) ⇒ ∀t ∈ (λ, τ ] : r(t) = fα(t).(5.12)

(ii) If λ < 1 and r ∈ Mλ is such that, for every ζ ∈ (α,1), the equation
F∞(ρ(t)|ζ ) = 1 − ζ + ζρ(t) = t has at most one solution in (0, 1), it even holds
r(t) ≥ fα(t) for all t ∈ [0,1].

(iii) If λ = 1 and assuming (D3), (I1) and (I2), it holds that

inf
r∈M1

r = fα.

Moreover, for any ϑ ∈ �κ = {ϑ ∈ � : lim infn→∞ ζn(ϑ) > α/(κ(1 − α) + α)},
κ ∈ (0,1), the power of any f̃α ∈ M1 with f̃α(t) = fα(t) for all t ∈ [0, κ] is as-
ymptotically not smaller than the power of any other r ∈ M1, that is,

lim inf
n→∞

[
β̄ϑ

(
ϕSUD(f̃α)

n,n

) − β̄ϑ

(
ϕSUD(r)

n,n

)] ≥ 0 for all ϑ ∈ �κ.(5.13)
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PROOF. In order to prove part (i), assume that for an arbitrary chosen rejection
curve r ∈ Mλ it holds r(t∗) < fα(t∗) for some t∗ ∈ (0, λ). Consider now a Dirac-
uniform configuration PI0 with limn→∞ ζn = ζ and ζ ∈ (α,1) chosen such that
r(t∗) < F∞(t∗|ζ ) < fα(t∗). Then it is obvious that property (5.10) is violated,
because (with self-explaining notation) it follows PI0 -almost surely

lim inf
n→∞ R(r)

n /n ≥ F∞(t∗|ζ ) > F∞(tζ |ζ ) = fα(tζ )

and consequently

lim inf
n→∞ FDRI0

(
ϕ

SUD(r)
n,λn

) ≥ ζ t∗/(1 − ζ + ζ t∗) > ζ tζ /(1 − ζ + ζ tζ ) = α,

due to the fact that the function x �→ ζx/(1 − ζ + ζx) is strictly increasing in
x ∈ (0,1) and t∗ > tζ . Hence, for all t ∈ (0, λ) we have r(t) ≥ fα(t), from which
the assertion follows.

Now assume that we have r(t) ≤ fα(t) for all t ∈ (λ, τ ] and r(t∗) < fα(t∗) for
some t∗ ∈ (λ, τ ). Consider now the Dirac-uniform asymptotic model DU∞(ζ ∗)
with ζ ∗ ∈ (α,1) chosen such that fα(λ) < F∞(λ|ζ ∗), F∞(t∗|ζ ∗) < fα(t∗) and
infλ≤t≤t∗(F∞(t |ζ ∗) − r(t)) > 0, which is possible due to the left-continuity of the
rejection curve r . Then the argumentation is the same as before. Part (ii) and the
first assertion of part (iii) can be proven similarly.

For the proof of (5.13), we assume (in order to avoid triviality) n1(n) > 0 for all
n ∈ N, define Sn = Rn − Vn and denote the set of all f̃α ∈ M1 with f̃α(t) = fα(t)

for all t ∈ [0, κ] by Sκ . Then we have (with self-explaining notation as before) the
inequality

∀n ∈ N :∀f̃α ∈ Sκ :∀r ∈ M1 :
(

Sn(f̃α)

n1
− Sn(r)

n1

)
1{t∗n (r)≤κ} ≥ 0,

which holds true due to (5.11) and the fact that Sn is nondecreasing in t∗n . Now, for
fixed ϑ ∈ �κ , we utilize the chain of inequalities

t∗n(r|Pϑ) ≤ t∗n(r|DUn(ζn(ϑ))) ≤ t∗n(f̃α|DUn(ζn(ϑ))) < κ

which holds Pϑ -almost surely for eventually all n ∈ N, leading to lim supn→∞ t∗n
(r|Pϑ) < κ and consequently to 1{t∗n (r)≤κ} → 1 [Pϑ ] for all ϑ ∈ �κ . Therefore, we
obtain Pϑ -almost surely

lim inf
n→∞

(
Sn(f̃α)

n1
− Sn(r)

n1

)
≥ 0 for all ϑ ∈ �κ, f̃α ∈ Sκ, r ∈ M1.(5.14)

Taking expectation in (5.14) and utilizing Fatou’s lemma, we finally arrive at as-
sertion (5.13). �

Theorem 5.5 shows that in the class of SU procedures with rejection curve
r ∈ M1 we always have r ≥ fα . In the class of truncated SU procedures with
parameter κ ∈ (0,1), the truncated procedure based on fα is the best choice. More
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generally, if we restrict attention to the subspace �κ ⊂ � described in (iii) of The-
orem 5.5, fα is the asymptotically uniformly best choice on [0, κ] for a step-up
procedure. For SUD procedures with parameter λ < 1, fα leads to the asymptot-
ically uniformly best choice of critical values on the step-up part, see (5.11). On
the step-down part of a SUD procedure, fα cannot be uniformly improved by some
r ∈ Mλ whatever r does on the step-up part; see (5.12) with τ = 1. For arbitrary
τ ∈ (λ,1], assertion (5.12) states that a rejection curve r ∈ Mλ cannot be first
smaller and then larger than fα on the interval (λ,1]. It seems possible that Mλ

contains an r which is first larger and then smaller on the step-down part. But this
would imply that the SUD procedure based on r is asymptotically less powerful
than the SUD procedure based on fα on some �κ . If we restrict attention to re-
jection curves r ∈ Mλ described in (ii) of Theorem 5.5, then fα is the best choice.
These considerations may justify calling fα the asymptotically optimal rejection
curve (AORC).

6. Concluding remarks. In view of the asymptotic optimality results devel-
oped in Section 5 concerning procedures based on fα or its modifications, it is
natural to ask how large n has to become in order to achieve a reasonable behavior
of the FDR of the proposed procedures. As already mentioned in Example 3.1, the
asymptotic exhaustion of the whole FDR level has to be traded off with a slightly
liberal behavior of the procedures based on fα in the finite case. In order to illus-
trate this effect, we consider the SU procedures based on f

(i)
α,κ , i = 1,2, where the

upper bound given in (4.9) is sharp in the DUn(ζn)-model. Due to the pointwise
order of these two rejection curves (see Figure 1) it is clear that an SU proce-
dure based on f

(2)
α,κ is more liberal in the DUn(ζn)-model. We therefore present

FIG. 1. From left to right: Simes line, f (1)
α,κ1 , f (2)

α,κ2 , the truncated version based on fα with κ3 = 1/2

and fα . The κi ’s are chosen such that f
(i)
λ,κi

(1/2) = 1 for i = 1,2.
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FIG. 2. Actual FDR of the SU procedure based on f
(2)
0.05,κ2

for n = 100,500,1000 depending on n0
under Dirac-uniform configurations. The curves can be distinguished by noticing that the maximum
FDR becomes smaller for increasing n.

results for this procedure. Figure 2 depicts the behavior of this procedure under
Dirac-uniform configurations with a varying number of true hypotheses for three
different values of n. For n = 100, there is a notable violation of the FDR level
α = 5% for 12 ≤ n0 ≤ 35. The largest FDR under Dirac-uniform is attained for
n0 = 16 with numerical value 0.05801. For the two larger values of n, the actual
level does not exceed α by much. Computation of the FDR for a SU(D) procedure
in the case of an underlying Dirac-uniform configuration can be done by utilizing
formulas for the joint distribution function of order statistics, see [21], pages 366–
367, and [10].

We will give one brief suggestion for a modification of fα in the finite case.
However, this shall not be emphasized too much, because on the one hand, the
AORC is designed for the asymptotic case and on the other hand, we have to keep
in mind that the FDR values under Dirac-uniform reflect an unrealistic worst case
scenario. For realistic alternatives, we get much smaller realized FDRs so that the
original AORC may safely be used in the finite case, for example, n ≥ 500.

We only mention one possibility to obtain a valid set of critical values for an SU
or SUD procedure guaranteeing strict FDR control, that is, we adjust the critical
values given in (3.1) in an appropriate way. For example, we can try to find a
suitable βn > 0 such that the choice

αi:n = iα

n + βn − i(1 − α)
, i = 1, . . . , n,(6.1)

yields an SU procedure (or SUD procedure) controlling the FDR at level α. The
critical values (6.1) correspond to the rejection curve

f̃α(t) =
(

1 + βn

n

)
fα(t), t ∈ [0, α/(α + βn/n)].
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It is remarkable that herewith a direct connection to the considerations in [3] can
be drawn. In the remark to Definition 7 in [3], the authors propose an (adaptive) SD
procedure with critical values given by (6.1) and the universal adjustment constant
βn ≡ 1.0. FDR control for this SD procedure is proved in [15] in case of indepen-
dent p-values. For an SU procedure, the adjustment constant has to be larger. For
example, for α = 0.05, an SU procedure with n = 100 and the choice β100 = 1.76
leads to strict FDR control.

A systematic comparison of other procedures controlling the FDR strictly or
asymptotically with procedures based on the AORC goes beyond the scope of this
paper and is directed to future research. Typically, each approach has assets and
drawbacks. At least in the class of SUD procedures (including SD and SU pro-
cedures) based on fixed rejection curves the new procedures based on the AORC
are powerful alternatives. One can construct situations, especially if the propor-
tion ζ of true hypotheses is small, where the new procedures reject many more
hypotheses than the LSU procedure. On the other hand, if ζ is large, there may be
only a few more or, in rare cases, fewer rejections. In other words, if ζ is close
to one, it is hard to beat the LSU procedure by a considerable amount. Moreover,
it should not be concealed that the LSU procedure has the advantage that it ap-
plies for certain situations with positive dependent p-values, whereas procedures
based on the AORC may fail to control the FDR in such situations. For exam-
ple, this is the case for p-values based on normally distributed test statistics with
positive correlation as it appears in multiple comparisons with a control. Whether
the AORC works for pairwise comparisons or multiple testing of correlation co-
efficients ρij (Hij :ρij = 0 versus Kij :ρij �= 0, 1 ≤ i < j ≤ k) is currently under
investigation.

Finally, one may think about a more flexible concept of FDR control depend-
ing on the proportion ζn = ζn(ϑ) of true hypotheses which allows, for example,
a larger FDR for larger values of ζn and a smaller FDR for smaller values of ζn,
or vice versa. Therefore, one may choose a suitable FDR controlling function
g : [0,1] −→ [0,1] and require FDR control at this level function g, that is,

∀ϑ ∈ � : FDRϑ

(
ϕ(n)

) ≤ g(ζn(ϑ)).

This means that for any ζn ∈ [0,1] the FDR is controlled at level g(ζn) if the
proportion of true hypotheses is ζn. Obviously, for the LSU procedure at FDR
level α we can choose g(ζ ) = ζα. For an SUD procedure related to the AORC with
critical values defined in (6.1) and suitable βn we can choose g(ζ ) = min{α, ζ }.
Asymptotic FDR control at level function g now means that

lim sup
n→∞

sup
ϑ∈�

(
FDRϑ

(
ϕ(n)

) − g(ζn(ϑ))
) ≤ 0.

For example, in the case of the truncated SU procedure, we get from Corollary 5.1
that we can choose g(ζ ) = α for ζ ∈ [ζ ∗(κ),1] and g(ζ ) = ζκ/(1 − ζ + ζκ) for
ζ ∈ [0, ζ ∗(κ)).
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